Nutrient pollution
Nutrient pollution is caused by excess nitrogen and phosphorus in the air and water. Nitrogen and phosphorus are nutrients that are natural parts of aquatic ecosystems. Nitrogen is also the most abundant element in the air we breathe. Nitrogen and phosphorus support the growth of algae and aquatic plants, which provide food and habitat for fish, shellfish and smaller organisms that live in water. But when too much nitrogen and phosphorus enter the environment - usually from a wide range of human activities - the air and water can become polluted. Nutrient pollution has impacted many streams, rivers, lakes, bays and coastal waters for the past several decades, resulting in serious environmental and human health issues, and impacting the economy.
OVERVIEW
Water and nutrient circulation in Puget Sound
Complex physical processes such as hydrology, nutrient cycling, and sediment transport are linked to water circulation patterns in Puget Sound.
RELATED ARTICLES

Eyes Over Puget Sound: A Decade in Review
The Washington State Department of Ecology has reached one hundred Eyes Over Puget Sound reports. Since 2011, Ecology has provided aerial observations and documented visible features at the surface of Puget Sound from a floatplane. This unique perspective from the air featured Puget Sound's natural beauty, its oceanographic complexity, and its ecological treasures. It also raised awareness of the challenges that the water body is facing today. Our image-rich documentation of known eutrophication indicators ranges from algal and Noctiluca blooms to macroalgae, jellyfish, and human stressors. It provides a visually captivating time-capsule of issues facing Puget Sound. The report is rich in educational and outreach material, inspired numerous news reports, and drew academic and public attention during the period of marine heat wave of the north Pacific, The Blob.

Eyes Over Puget Sound: Surface Conditions Report - October 2022
The report comes after a third year of La Nina conditions. Weak upwelling off the coast and low river flows of major rivers meant less cold, nutrient-rich, upwelled water was being entrained into Puget Sound in late summer and fall. Water conditions in Puget Sound in October were generally expected while Willapa Bay and Grays Harbor were both unusually warm and salty. Smoky air restricted our flight to Southern Puget and Central Sound where we saw blooms in terminal bays as well as patches of jellyfish. Sediment in Commencement Bay and along shorelines in Totten Inlet was unusual for a dry fall. A healthy foodweb has at its base a balance of nutrients. Explore what we found over the period of two decades of monitoring.

Understanding the causes of low oxygen in Puget Sound
How do excess nutrients trigger low oxygen conditions in Puget Sound and what do those conditions mean for the species that live here?

Tiny plankton play a mighty role in the health of Puget Sound
Diverse communities of microscopic organisms called phytoplankton make up the base of the aquatic food web. In that role, they are essential to the tiny animals that eat them, but phytoplankton are not dependent on others. Thanks to chlorophyl, these tiny organisms can generate their own energy from nutrients and sunlight. Despite their critical importance to a great diversity of sea life in Puget Sound, phytoplankton can also contribute to low-oxygen conditions, and some can be harmful in other ways.

What drives Puget Sound's 'underwater Amazon'?
In a new series we are calling Ask a Scientist we interview local researchers to get their thoughts on some of the important but lesser-known scientific facts about the Puget Sound ecosystem. Today, we speak with University of Washington oceanographer Parker MacCready about Puget Sound’s “underwater Amazon” and why it has profound implications for Puget Sound science and policy. It all begins, he says, with the mixing of fresh and salt water and something called the estuarine exchange flow.

The Salish Sea Model
The Salish Sea Model is a computer model used to predict spatial and temporal patterns related to water circulation in the Salish Sea. It was developed at the United States Department of Energy's Pacific Northwest National Laboratory with funding from the Environmental Protection Agency. It is housed at the University of Washington Center for Urban Waters which is affiliated with the Encyclopedia of Puget Sound.

Ecosystem models expand our understanding of the Salish Sea
Scientists are using computer models to address complex issues in the Salish Sea like the rise of harmful algal blooms and the movement of toxic PCBs. LiveOcean, Atlantis and the Salish Sea Model are three systems that are changing the game for ecologists and other researchers.

Salish Sea Model looks at climate impacts on the nearshore
A 2019 paper in the Journal of Geophysical Research: Oceans outlines how the Salish Sea Model describes the impacts of climate change, sea level rise and nutrient loads on the region's nearshore environment.

Ten things to understand about the Clean Water Act
The federal Clean Water Act of 1972 was designed as a logical step-by-step approach to clean up the nation's waterways. Most people acknowledge that the law has been effective in reducing pollution, but industrial and environment groups tend to be on opposite sides when discussing whether regulations and permits adequately protect water quality. These 10 elements of the Clean Water Act (CWA) focus on how the law applies to Puget Sound.

Does Puget Sound need a diet? Concerns grow over nutrients
As the region's population grows, scientists say we can expect to see increasing amounts of nitrogen and other elements flowing into Puget Sound. Known as “nutrients” these elements are naturally occurring and even necessary for life, but officials worry that nutrients from wastewater and other human sources are tipping the balance. That could mean big problems for fish and other marine life, gradually depleting the water of oxygen and altering the food web.

Sewage treatment plant in Olympia a leader in nitrogen removal
A regional sewage-treatment system in Thurston County has helped contain low-oxygen problems in Budd Inlet as the population continues to grow. The system cleans up some of the effluent for replenishing groundwater supplies.

Dead plankton leave clues to a food-web mystery
High amounts of elements such as nitrogen can cause blooms of phytoplankton that sometimes trigger perturbations throughout the food web. This occurs most often in the spring and summer after the long, dark, cloudy days of winter begin to fade.

Puget Sound circulation triggers low-oxygen conditions at different times and in different places
The amount of oxygen in the Salish Sea is dependent on water circulation which distributes chemical elements such as nitrogen through the system.

How the state assesses low oxygen in Puget Sound
Under the federal Clean Water Act, states are required to assess the quality of their surface waters and compile a list of polluted water bodies. The law mandates cleanup plans to address pollution and other water-quality problems. This article describes how this process works in Washington state for dissolved oxygen.

Puget Sound Ecosystem Monitoring Program
The Puget Sound Ecosystem Monitoring Program (PSEMP) is an independent program established by state and federal statute to monitor environmental conditions in Puget Sound.

Harmful algal blooms in Puget Sound
An algal bloom is a rapid increase or accumulation in the population of algae in a water system. While most are innocuous, there are a small number of algae species that produce harmful toxins to humans and animals.

Transfer of nutrients in the ecosystem
Decaying organic matter plays an important role in marine ecosystems.
A study of the nutrients in the main basin of Puget Sound
This study compared recent and historical data to determine the presence of any significant changes in nutrient and oxygen concentrations subsequent to METRO discharge, examined seasonal cycles in water properties, and examined the flux of nutrients within the study area.
Dissolved oxygen and hypoxia in Puget Sound
Hypoxia, defined as dissolved oxygen (DO) concentrations less than 2 mg / L, has become widespread throughout estuaries and semi-enclosed seas throughout the world (Diaz 2001).

Review finds minimal evidence for human impacts on Hood Canal hypoxia
An independent review conducted by the Puget Sound Institute (PSI) is featured in findings by the Environmental Protection Agency and the Washington State Department of Ecology that there is currently “no compelling evidence” that humans are the cause for recent trends in declines in dissolved oxygen in Hood Canal.