Balsam poplar is one of the most versatile members of the Salicaceae in its potential for vegetative reproduction. New stems originating from intact or broken roots, preformed or adventitious buds on stumps or at the base of trees, and buried stems or branches have been observed in primary or secondary succession on flood plain and upland sites (33,66,69).
In Alaska, segments of stems and branches broken and buried during autumn logging contribute to regeneration. This buried material was from 2 to 6 cm (0.8 to 2.4 in) in diameter and 10 to 200 cm (4 to 79 in) long (69).
Dormant hardwood stem cuttings, as old as 10 to 15 years and probably older, will produce roots and new shoots. Older cuttings frequently take longer to root than younger cuttings. The distal portion of the current year's growth may root more poorly than the basal part of the current growth and 2-year-old wood. In a rooting study conducted with material from Ontario, cuttings collected after December had a higher percentage of rooting, more roots per cutting, and a higher percentage of cuttings with bud activity than those collected before December. Age of the parent tree had no effect on number of roots produced or bud activity (8). Clonal differences are a major source of variation in rooting percentage and the number of primary roots produced by dormant cuttings (15). Rooting potential for hardwood cuttings ranges from 75 to 100 percent (8,24); rooting of softwood cuttings ranges from 23 to 63 percent, depending on treatment (24).
Unrooted stem sections have been used with varying success in regeneration of field sites. In one study in Alaska, survival after 3 years ranged from 15 to 82 percent. Highest survival was observed on gravel substrates, least on silt and sand soils. Third-year height was greatest on silt and sand-1.2 m (3.9 ft) (28). In a prescribed bum, survival after 5 years was generally low; microsites burned to mineral soil supported the best growth. Relatively deep organic layers, whether burned or unburned, provide a poor environment for the establishment of unrooted stem cuttings (65,66).
Stem cuttings (hardwood and softwood or greenwood cuttings) have been the major means of stand establishment for the short-rotation intensive culture of balsam poplar and hybrid poplars in Wisconsin, Ontario, and other areas (20). Hardwood cuttings are grown in clonal orchards, harvested, stored, and planted either rooted or unrooted. Clones that are difficult to root may survive better if they are regenerated from rooted cuttings. Greenwood cuttings provide a means of rapidly increasing the number of desirable clones, but they must be rooted before planting (20).
In the greenhouse, root cuttings of balsam poplar clones from Utah produced surface suckers from suppressed buds and end suckers from the cambium at the cut end (46). Root cuttings also produce new lateral roots from the same origins as suckers. Alaskan clones respond similarly (69).
Production of suckers after disturbance of the parent tree varies; the response is generally less than that of aspen which suckers prolifically. In Alaska, stocking after 3 years ranged from 4 to 61 percent; densities were 1 to 2 plants/m² (3 to 8/milacre) in harvested balsam poplar stands. Suckers made up about 80 percent of the stocking in the summer- and winter-logged areas but only 27 percent in a fall-harvested area. Production was on intact and broken roots within the upper 2 cm (0.8 in) of the surface soil. Average diameter of roots producing suckers was 1 cm (0.4 in) (69). In a 40- to 50-year-old stand on the Tanana River in interior Alaska, stocking was 83 percent and density 2 trees/m² (8/milacre) (25). In Saskatchewan, sucker regeneration was observed on dry, moist, and wet regimes. Stocking was 12 percent in the aspen-hazelnut type; 5 percent in the white spruce-aspen-bunchberry type; 5 percent in the white spruce/feathermoss type; and 7 percent in the aspen/sarsaparilla/twinflower type (31).
Density of suckers is greatest on sites where the organic layers are disturbed. Organic layers are effective insulators and may limit sprouting by controlling soil temperature, particularly in high latitude forests (69).
Production of suckers may be important in the invasion and establishment of balsam poplar on disturbed sites and in primary succession. Expansion has been observed on flood plains from established stands to areas that did not have poplar (40). Colonization by clonal expansion is believed to be more important on dry sites where the probability of seedling establishment is low (33). The area covered by individual clones on productive forest sites is not well documented; one 15-year-old clone consisted of 27 ramets and covered an area of 350 m² (3,700 ft²) (33).
The extent of clonal development is best documented at elevational and latitudinal treeline sites where seedling establishment is limited and development of stands through vegetative growth is the main means of colonization and maintenance of the species (6,35). Scattered groves of balsam poplar in the Brooks and Alaska Ranges of Alaska were found to be individual clones. Representative clones covered from 100 to 200 m² (1,060 to 2,110 ft²) and contained from 90 to 150 ramets. Clones with the oldest ramets (114 years old) were found on the Brooks Range sites. Ramets did not occur in areas with dense shrub cover (35).
New shoots also form on stumps from suppressed buds and adventitious buds developed from undifferentiated inner bark. Most originate in the inner bark at the top of the stump. Sprouting response varies with genotype and declines as tree age increases. It may be high (50 to 100/stump) initially, but production and survival of sprouts vary with season and logging method. The percentage of stumps with sprouts declines over a 2- to 5-year period (69).
Balsam poplar stump sprouts may be of little potential value in replacement of trees in mature stands after disturbance because of the fragile connection between sprout and stump. In intensively cultured stands grown on short rotations, coppicing is used to replace the new crop after harvest of the original stand established from stem cuttings. Individual cuttings may produce 10 to 20 sprouts I year after harvesting; 4 to 8 sprouts will survive after 2 years (20).
The growth potential of balsam poplar vegetative reproduction is greater than that of early seedling growth. Average height of balsam poplar was about 1 m (3.2 ft) after 3 years; height of dominants was 2.5 to 3.0 m (8.1 to 9.8 ft). The age of suckers at breast height (1.5 m or 4.9 ft) varies with site quality and the degree and type of disturbance (21,25).
The most detailed data available for growth of vegetative reproduction comes from stands of a P. balsamifera x tristis hybrid established from stem cuttings. After harvest of the original stands, coppice stands are managed for several rotations. Mean annual increment (stem plus branchwood) is 21 to 25 t/ha (9.5 to 11.0 tons/acre), depending on stand age and rotation length (11). Other studies with this hybrid have shown that 1- and 2-year-old coppice stands are taller and more productive than stands of similar age established from stem cuttings. Architecturally, the stands are different in that each individual in coppice stands has 10 to 20 stems at age 1 and 4 to 8 stems at age 2. Stands from stem cuttings usually contain one stem per individual at this age (20).
Internode length on young vegetative regeneration is usually greatest in the lower part of the annual shoot. Buds are longest in the central part of the shoot, and the terminal bud is equal to the largest nodal bud. First-order branches are smallest at the base of the previous year's growth and longest near the top. Angle of divergence of first-order branches is 30° to 40° (37).