More info for the terms: capsule, competition, cover, density, fire management, forb, forbs, formation, invasive species, natural, nonnative species, shrubs, succession
Impacts: Toadflax can be a serious agricultural weed that is favored by reduced-tillage farming methods, is resistant to many herbicides, and provides over-wintering sites for cucumber mosaic virus and broad bean wilt virus in New York [95].
Its impacts in wildlands and natural areas are not as clear. Like any invasive plant, it can displace plant communities and associated animal life. This can result in a loss of forage in pastures and rangelands that can impact livestock and some big game species, especially on winter ranges. Where sod-forming or bunchgrass communities are replaced by toadflax, soil erosion, surface runoff, and sediment yield can be increased. However, on harsh, sparsely vegetated sites toadflax can actually help stabilize soil [57,95].
In a survey of ranchers and farmers in north-central Idaho, 1% of respondents perceived Dalmatian toadflax as a moderate threat in 1982, and none perceived it as a problem in 1988 [10]. Toadflax can, however, spread rapidly, and it is important to eradicate infestations while they are still small in order to contain their spread [24,120]. For example, Dalmatian toadflax was introduced at a mine site in the 1970s on private land adjacent to the Raymond Mountain Wilderness Study Area in Wyoming. From this site, Dalmatian toadflax spread over 15 years to cover a 10-mile radius in the wilderness area and adjacent private land [120].
Control: Keys to successful control of toadflax are prevention of seed production, depleting root reserves, and killing seedlings before vegetative reproduction begins (within 2-3 weeks of germination) [11,95]. Reducing seed production may limit the spread of toadflax, although is not likely to result in a reduction of toadflax stand size or density because of vigorous vegetative reproduction. Reduction of toadflax stand size or density is more likely achieved by reducing the number of stems, limiting toadflax stem and lateral root-bud production, and encouraging desirable plant populations that provide strong competition for resources [32].
The diverse geographic range of toadflax throughout North America and its genetic variability result in localized populations that can respond differently to the same management methods and environmental conditions. Determining the most effective and economical control methods for a particular toadflax population will require annual monitoring, mapping, evaluation, and follow-up treatments. In this way, site-specific management efforts can be adjusted to determine the best combination of control strategies for a particular site [57].
Monitoring treatment areas is best done when toadflax plants have formed buds and are beginning to flower (around early June in most areas). Many control techniques are most effective at this time because root carbohydrate reserves are at their lowest, which makes it more difficult for root systems to recover. Follow-up work within the first 2 months of initial treatment (in late June or early July) is recommended to locate and remove any late-flowering plants [11].
Because toadflax occurs and is competitive with several other invasive species (e.g. [16,25,38,40]), management to control it and/or other species must consider the possibility of succession to an equally undesirable species when plants are removed [38,40,58,73,114].
Prevention: Because toadflax species are expensive, labor-intensive, and difficult to manage once established, preventing infestations is the most time- and cost-effective management approach. This is accomplished by maintaining desirable plant communities, by preventing toadflax seeds and root pieces from entering uninfested areas, and by careful monitoring for and early eradication of newly established plants. This is especially important where toadflax is common in areas around the management site, especially along roads, trails, and rivers (e.g. [81]).
Maintain desirable plant communities by limiting spring grazing (since toadflax seedlings can more effectively compete with grazed plants), minimizing soil disturbance, and seeding disturbed sites with desirable species (see Fire Management Considerations and Cultural control) [57,81,95].
Prevent seeds and root pieces from entering uninfested areas as follows [57]:
- Check and clean equipment before moving it into uninfested areas or before bringing it from infested areas
- When moving livestock from infested to uninfested areas, hold them in corrals or small pastures until viable seeds have had time to pass through the digestive tract (6 days for cattle, 11 days for sheep)
- Monitor for toadflax seedling establishment in livestock holding areas and areas where fill dirt has been imported
- Avoid purchasing feed or seed that could be contaminated with weed seeds
Toadflax is a common roadside weed. Prevention of its establishment (and the establishment of many other invasive species) requires that road construction projects be avoided whenever possible, especially in nature reserves. When unavoidable, road construction projects should be treated and funded as 10- to 20-year biological projects rather than 1- to 2-year engineering projects, with biologists and resource managers overseeing road construction. Projects should not be considered complete until native vegetation is fully established. Topsoil removed during construction can be redeposited in roadside ditches, and roadsides reseeded with native species. Roadsides should then be regularly monitored and actively managed for control and eradication of nonnative species [107].
Integrated management: Successful management of toadflax requires integrating as many management strategies as possible. Management programs for toadflax should emphasize both the prevention of seed formation and vegetative spread [57].
Physical/mechanical: Removal of the aboveground portion of toadflax plants can eliminate seed production for that year (if done in spring or early summer, before seed set), and reduce the current year's growth, but it will not kill them. Removal each year for 5 or 6 years may be necessary to deplete the remaining root system of reserves, and 10 to 15 years may be required to remove seedlings produced from dormant seeds. Hand-pulling, mowing, and tillage can be effective in preventing seed production and starving toadflax roots, thereby controlling infestations under certain conditions only if done repeatedly and/or in combination with other control methods [11,57,95].
Pulling toadflax by hand can effectively remove seedlings and small infestations and limit spread of large infestations by pulling around patch perimeters. Pulling is most effective in sandy or moist soils, because more root length can be removed. It is important to pull as much of the root as possible and to follow lateral roots to their ends [11,57]. Managers at several nature preserves in Colorado, Idaho, and Oregon have used hand-pulling to remove toadflax and keep infestations from spreading. Most say that early treatment, removal of as much of the roots as possible, and persistence for several years are important for hand-pulling to be effective [51,81,82]
A decade-long hand-pulling experiment at Magnusson Butte Preserve, Washington, demonstrates the effectiveness of repeated hand-pulling. The experiment was begun in a 5 by 5 meter test plot, and was then expanded to the entire 28-acre preserve. During the 1st week of June, a team of about 30 volunteers walked the preserve pulling all toadflax plants found. At this time, flowers were beginning to appear making plants easier to locate, and soils were still moist, making plants easier to pull with minimal soil disturbance. In the beginning, stems were removed in bags to avoid a mulching effect on desirable native plants, but in later years when there were fewer plants they were dropped in place with no ill effect. A follow-up visit was conducted during the last week in June to remove any late-flowering plants that might have been missed. Teams were able to reduce the number of flowering stems each year by an estimated 90-95% preserve-wide. In the 3rd year, it was noticed that flowering stems were not only reduced in number, but were smaller in size and lower in vigor [11].
Mowing and cutting of toadflax may be used to help decrease seed production, but will not eliminate toadflax stands [81,95,114]. Cutting flowering stems every year for several successive years can stress plants and help control infestations [51]. Mowing and cutting are usually not recommended, because they do not prevent root growth or affect buried seed [57]. Cutting may even contribute to stand longevity by stimulating dormant buds in the axils of vestigial leaves at the bases of cut floral shoots, as was observed in Dalmatian toadflax in Washington [88,89]. Considerable secondary and tertiary branching can occur following injury to the main stem [1]. Mowing may be less effective than cutting since plants that are cut several inches above the soil surface may sprout more rapidly. In addition, mowing may seriously damage desirable plants and is usually not feasible or desirable in natural areas [11].
Consistent, intensive, clean cultivation for at least 2 years with 8 to 10 cultivations the 1st year and 4 to 5 cultivations the 2nd year, will control toadflax (reviews by [95,114]). Care must be taken not to transport toadflax root pieces to clean fields, as root pieces as short as 1 cm long can sprout new plants and expand rapidly [68]. Seedlings less than 2-3 weeks old are particularly susceptible to tillage since, at this stage, vegetative reproduction has not started [95]. Tillage is generally inappropriate for natural areas.
Fire: See Fire Management Considerations.
Biological: Tu and others [106] provide information and considerations for biological control of invasive species in general in their Weed Control Methods Handbook. Carpenter and Murray [11] provide detailed information on biological control of toadflax, including contacts for authorities on each of the insects used.
Several insect species that feed on toadflax have been purposely or accidentally released in the U.S. and Canada. Flower feeding beetles (Brachypterolus pulicarius and Gymnetron antirrhini) appear to be the most important insects for reducing seed production in toadflax. B. pulicarius larvae develop inside floral ovaries, and adults feed on buds and young stems. B. pulicarius can reduce seed production in yellow toadflax by 80 to 90%, and by 43 to 93% in Dalmatian toadflax [33]. G. antirrhini can reduce seed production in yellow toadflax by 85-90% [72]. A stem-boring weevil (Mecinus janthinus), whose larvae and adults feed on shoots of both toadflax species, seems to be the most promising biocontrol agent for toadflax as of this writing [37,108]. Of the biocontrol agents listed for toadflax, the toadflax moth (Calophasia lunula) is not suggested for redistribution since it attacks native snapdragons in California [108].
The following table provides information on some insects tested and/or released for control of toadflax:
Agent Plant attacked Status States established References toadflax flower-feeding beetle
(Brachypterolus pulicarius) mainly yellow toadflax with a "strain" that feeds on Dalmatian toadflax yellow toadflax strain accidentally introduced; Dalmatian toadflax strain collected and released in Montana well established in most yellow toadflax infestations in North America [17,33,63,72,95] toadflax moth
(Calophasia lunula) primarily yellow toadflax deliberately tested and released in 7 states; most releases failed to establish; larvae feed on new vegetative shoots and terminal portions of stems ID,MT,WA [17,72,95] root-boring moth (Eteobaliea serratella) Dalmatian toadflax and yellow toadflax approved for release in 1995; no established populations confirmed
---
[72,95] root-boring moth
(E. intermediella) Dalmatian toadflax and yellow toadflax approved for release in 1995; no established populations confirmed
---
[72,95] toadflax capsule weevil (Gymnetron antirrhini) mainly yellow toadflax with a "strain" that feeds on Dalmatian toadflax accidentally introduced widespread and common at yellow toadflax sites; eastern Canada, BC; ID, MT, OR, WA, WY [17,72,95] weevil (G. netum) mainly yellow toadflax with a "strain" that feeds on Dalmatian toadflax accidentally introduced; larvae develop inside fruit and adults feed on buds, leaves, and stems
established on yellow toadflax several states in northern U.S. and in BC
[17,95] stem-boring weevil
(Mecinus janthinus) Dalmatian toadflax and yellow toadflax field releases have been made at several sites in western U.S. and Canada established in BC, AB and WA; small populations established in CO, ID, MT, OR, SD, UT, WY [37,72,95]
Domestic sheep and goats have been used to control toadflax [57,106]. Preliminary results of field trials in Montana show that domestic sheep can help suppress stands of Dalmatian toadflax and limit seed production. In these studies, 1,000 ewes and lambs were placed in a hilly rangeland area of moderate to heavy infestations of Dalmatian toadflax (densities of 25 to 100% of the vegetation). Approximately 35 to 45% of toadflax foliage was stripped, including the terminal 6 to 10 inches (15-25 cm) of plant stems. Although domestic sheep only nibbled the plants initially, within 2 to 3 weeks they were consuming Dalmatian toadflax regularly, even though other forage was present. In these studies, the sheep did well and showed acceptable weight gain ([57] and references therein).
Chemical: Tu and others [106] provide information and considerations for chemical control of invasive species in general, and detailed information on individual chemicals and adjuvants in their Weed Control Methods Handbook. Carpenter and Murray [11] provide detailed information on chemical control of toadflax, including contacts for authorities on each of the chemicals discussed.
Lajeunesse [57] suggests that chemical control of toadflax is complicated by the plant's high genetic variability, the waxy leaf surface that can hinder herbicide uptake, and coarse soils (in which toadflax is often found) that can allow herbicides to leach below the root zone. Even when chemical control appears effective, reinvasion by toadflax may occur from buried seed. Where herbicides appear effective, it is necessary to treat an infestation every 3 to 4 years for as long as 12 years [57]. Permanent, long-term control of toadflax cannot be achieved with herbicide treatment alone ([95] and references therein).
Triclopyr, fluroxypyr, 2,4-D, MCPA, 2,4-DB, MCPB, and mecoprop are ineffective for toadflax control ([57,95] and references therein). Glyphosate did not effectively control toadflax, but did kill neighboring plants, thereby giving toadflax the competitive advantage [81]. Effective herbicides for Dalmatian toadflax include chlorsulfuron (results for 1-2 years) [45], dicamba (results for 1 year), picloram (although it is ineffective on some sites), and imazapic ([46,57,81] and references therein).
Picloram at the rate of 1.5 to 2 lb a.i. per acre, is purported to be the most effective herbicide treatment for Dalmatian toadflax in Montana, although it will not usually provide complete control [55], and it may also harm desirable plants.
Sebastian and Beck [97] measured percent control of Dalmatian toadflax and percent injury to crested wheatgrass (Agropyron cristatum) in plots treated with various rates of picloram, fluorxypyr, and a mix of the 2 chemicals applied at different time/growth stages for 3 years after application. Better control was achieved with lower rates of picloram (0.5 lb a.i./acre), possibly because there was less injury to competing wheatgrass at the lower rates. Fluroxypyr resulted in no control when applied alone, and did not improve control rates when mixed with picloram over picloram alone [97].
The reduction of desirable nontarget species by picloram may be unacceptably high at application rates recommended for toadflax control. At much lower rates (0.28 kg a.i./ha), fall applications of picloram depressed species richness and diversity on rough fescue grassland (Festuca spp.) and early seral Douglas-fir/snowberry forest (Pseudotsuga menziesii/Symphoricarpos albus) treated to control spotted knapweed in western Montana. In these cases species diversity recovered to untreated levels within 3 years of the initial applications, and the authors described these effects as "small and transitory." Spring applications, however, caused depressions in diversity that persisted through the last year of sampling (6 years after initial application) [84]. Similarly, applications of picloram at 0.56 kg a.i./ha (in combination with prescribed burning) to control Dalmatian toadflax on big sagebrush-bluebunch wheatgrass sites in southwestern Montana reduced biomass, cover, and density of Dalmatian toadflax to 90% of the control, and decreased overall forb biomass to nearly 100% of the control. Applications of chlorsulfuron had similar effects on Dalmatian toadflax in this study, but slightly less negative impact on native forbs. The authors conclude that while herbicides may help provide short-term control on burned rangeland, the combination of forb reduction, open niches from burned trees and shrubs, and pressure on grass from wildlife may leave sites susceptible to reestablishment of toadflax from the soil seed bank [45].
An experiment to determine the effects of 6 different herbicides at 3 rates on established spotted knapweed populations indicated that all rates reduced spotted knapweed biomass by 95-100%. However, suppression of spotted knapweed with clopyralid allowed yellow toadflax to become the dominant plant in those treatment areas. Picloram appeared to suppress yellow toadflax to some degree, as it did not become dominant in picloram treated plots [58]. Similarly, it appears that some agricultural herbicides encourage Dalmatian toadflax in Washington [81].
Cultural: Vigorous, healthy plant communities can often outcompete toadflax seedlings and thus prevent their establishment. In areas where toadflax is already established, initial toadflax control should be followed by establishment of well-adapted, desirable plant species that provide competition throughout the season at all levels of the soil-root profile. This can provide longer-term suppression. Proper grazing management to maintain the competitive ability of these plant communities is important for long-term control of toadflax [57,68].
Communities that are in good condition may recover without replanting desirable species as long as follow-up control is conducted annually. Increases in native and nonnative annual grasses, forbs, and residual native perennial forbs were observed following toadflax removal at Magnusson Butte Preserve in Washington. However, replanting native grasses and forbs can help accelerate recovery of an area [11].
Rose and others [91] tested 5 grasses ('Hycrest' crested wheatgrass (Agropyron cristatum), 'Luna' pubescent wheatgrass (intermediate wheatgrass (Thinopyrum intermedium)), 'Critana' thickspike wheatgrass (Elymus lanceolatus), 'Bozoisky' Russian wildrye (Psathyrostachys juncea), and 'Sodar' streambank wheatgrass (Elymus lanceolatus)) for their competitive ability against Dalmatian toadflax. They began by spraying the area (a dry, disturbed grassland site invaded by Dalmatian toadflax) with picloram in the fall, then rototilled and seeded the following April and August. Areas seeded in the spring to crested wheatgrass, intermediate wheatgrass, and thickspike wheatgrass showed significant (p<0.05) reductions of Dalmatian toadflax. The August seeding did not establish as quickly as the April seeding, but by the 3rd year, late summer seedings were all equal to or greater in competition than those established in spring. Dalmatian toadflax production (above ground dry weight) was greater in control plots than in plots seeded with thickspike, pubescent (intermediate), and crested wheatgrasses. Production of Dalmatian toadflax in areas seeded with streambank wheatgrass and Russian wildrye did not differ from production in unseeded controls. Each grass has characteristics that make it desirable in different situations, and areas to be revegetated should be assessed to determine which grasses would be most suitable depending on soil types, moisture level and use. Russian wildrye, intermediate wheatgrass, and crested wheatgrass are all nonnative species [91] and some of these are invasive in natural areas.